
Towards Intent-based Scheduling for Performance
and Security in Edge-to-Cloud Networks

José Santos∗, Eddy Truyen†, Christoph Baumann‡, Filip De Turck∗, Gerald Budigiri†, Wouter Joosen †
∗ IDLab, Department of Information Technology at Ghent University - imec, 9000 Ghent, Belgium

Email: {josepedro.pereiradossantos, filip.deturck}@UGent.be
† KU Leuven, imec-DistriNet, Leuven, Belgium - Email: {eddy.truyen, gerald.budigiri, wouter.joosen}@kuleuven.be

‡ Ericsson Security Research Stockholm, Sweden - Email: christoph.baumann@ericsson.com

Abstract—Telecom vendors have adopted containerization to
improve their software for heterogeneous edge-to-cloud networks.
Container orchestration platforms face however challenges when
adapting to the dynamic demands of multi-tenancy, often leading
to performance and security conflicts between Cluster Admin-
istrators (CAs) and applications administrators. In this paper,
we propose that network security and performance constraints
should be directly integrated into the scheduler. By dynamically
determining preferred network segments for each application,
this approach will reduce the network attack surface, enhance
resource utilization, and ensure improved performance. The
presented prototype and evaluation is just a first step. A compre-
hensive solution must also support an intent-based interface to the
scheduler that simplifies expression of cluster node segmentation
constraints and thus frees the CA from node-level management.
We outline the vision for such an intent-based interface and
emulate it by means of traditional security groups.

Index Terms—Security, Intent-based Scheduling, Kubernetes,
Containers, Cloud Computing

I. INTRODUCTION

5G networks support ultra-reliable low latency communi-
cation (URLLC) applications through coupling with the tech-
nologies of edge computing and containerization, provided that
plugged-in container network solutions are properly configured
with eBPF [1] and direct routing of container network traffic
within L3 subnets [2]. Telecom vendors have largely adopted
Kubernetes™ (K8s), the de-facto standard in container or-
chestration, to increase the portability of their software across
heterogeneous edge-to-cloud infrastructures. In comparison to
more traditional cluster installations, telco-managed clusters,
require a very strict separation of duties between Cluster
Administrators (CAs), who manage the cluster nodes – bare-
metal machines or Virtual Machines (VMs) in the cloud, and
application administrators who manage Pods, which is the unit
of deployment in K8s encapsulating one or more containers.

A challenge with K8s is that non-functional requirements
such as security and performance are implemented by multiple
system layers in the stack (i.e., cloud, clusters, Pods, and
application code). As such, performance and security mis-
configurations arise due to inconsistencies between different
system layers. This problem manifests itself most profoundly
at the network-level where the attained network bandwidth
and latency between two Pods is not only controlled by the
application code and networking stack of the Pods, but also de-
pends on the bandwidth and latency between the cluster nodes,

Configurations

Network Policies

Scheduling Policies

Auto-scaling Policies

Security Groups

Resources

Racks

Infrastructure

Power

Networks

Deployment Units

Pods

Nodes

Private
subnet

Public
subnetPrivate/Public

Subnets
Availability Zone

Zones

Autoscaling Group 

AWS Virtual
Private Cloud

Regions Region

Availability Zone Availability Zone

Fig. 1: Typical relations between deployment units and net-
work configurations in cloud-native cloud stacks.

which in turn may depend on the configuration and physical
equipment of the underlying service provider. Similarly, the
network firewalls configured at Pod level depend also on a
consistent configuration of the firewall rules for the cluster
nodes. For example, Fig. 1 illustrates the relation between the
deployment units of a K8s cluster on top of Amazon Web
Services. If a network policy is added to the Pod layer, security
groups on the VM layer may conflict with that network policy.

Such configuration inconsistencies are especially difficult
to solve in K8s clusters where application administrators and
CAs have separate duties, as is the case for telco service
providers. For instance, while the former want the best (net-
work) performance for their workloads and also potentially
exclusive access to certain compute infrastructure and accel-
erators, the latter are mainly concerned with optimizing the
usage of hardware resources and ensuring different tenants are
properly isolated. Naturally, CAs strive to honor service level
agreements with their customers, but they also need to protect
the clusters from potentially malicious tenants and thus may
want to restrict accumulation of privileged workloads on a
single node [3] or restrict the possibility for lateral movement
of attackers by least privilege network firewall rules [1], [4].
Any kind of network segmentation solution must take both
parties’ requirements into account and attempt to reconcile
them optimally. Given that network segmentation and Pod-
to-node requirements may also change dynamically, e.g., by



scaling existing or deploying new applications, as well as
adding new tenants to a cluster, this becomes a non-trivial
problem for container orchestrators like K8s.

This paper argues that the management of such configura-
tion and requirement conflicts is best left in the hands of the
scheduler. As a central component controlling the scheduling
of deployment units (e.g. Pods) within the underlying layer’s
deployment units (e.g. nodes), the scheduler has the power to
dynamically define network segments according to CA secu-
rity intentions, while also trying to align performance metrics
with the needs of the application being scheduled, deploying
inter-dependent Pods on nodes that belong to the same network
segment. However, the scheduler alone cannot prevent inter-
layer misconfigurations or network security vulnerabilities.
We propose to add a VM-level security policy manager that
automatically configures the VM network segments in a con-
sistent, least-privilege fashion, reacting to the deployment of
K8s application Pods and their network policies, but respecting
the CA segmentation requirements. Remaining conflicts on
this level may then be escalated back to the scheduler, e.g., to
reschedule any offending Pods.

Currently the CA perspective is supported by a limited
number of low-level mechanisms that do not scale for many
cluster nodes (see Section II for an essential critique). Ex-
isting state-of-the-art platforms for micro-segmentation offer
Application Program Interfaces (APIs) for detecting conflicts
between policies of different layers. However, such API-driven
policy conflict management is tedious and error-prone and
impedes Pod readiness.

This work aims to take first steps into improving the state
of the art in this respect. In particular, we:

• highlight the problem of performance and security con-
flicts that arise in multi-tenant cloud platforms between
application and CAs.

• propose an intent-based scheduling solution that enables
CAs to describe segmentation requirements in a simple
and versatile manner.

• present a prototype integrating the Diktyo [5] scheduler
and the GrassHopper (GH) [2] security policy manager,
and provide obtained evaluation results validating the
viability of the approach.

The remainder of the paper is organized as follows: Sec. II
details the motives behind the proposed intent-based frame-
work. Sec. III discusses the state-of-the-art on container secu-
rity techniques. Sec. IV presents the intent-based framework,
and its main components. Sec. V describes the evaluation
methodology, followed by the results in Sec. VI. Lastly,
Sec. VII concludes this paper and addresses future directions.

II. BACKGROUND & MOTIVATION

It is a common notion that application developers may want
to fine-tune the scheduling of their Pods on a K8s cluster.
Requirements may include scheduling a given Pod only on
nodes that have certain resources, e.g., Graphics Processing
Units (GPUs) and other accelerators, or avoiding certain nodes,
e.g., due to their geographic location and data protection

concerns. Similarly, developers may want to schedule Pods
on the same node to reduce latency, or different replicas of
the same Pod on different nodes to strengthen availability.
K8s offers several mechanisms for fine-tuning its scheduler
in multiple ways:

• Node selectors allow to schedule Pods only on nodes with
certain node labels;

• Node (anti-)affinity rules allow to attract or repel Pods
to or from nodes based on rules expressed as logical or
arithmetic conditions on node labels;

• Taints can be added to nodes to disallow scheduling
Pods on them unless the latter have been marked with
a corresponding toleration;

• Pod (anti-)affinity rules allow to specify that Pods with
certain Pod labels must either always or never be sched-
uled on the same node.

Thus an app developer can, for example, require scheduling
of Pods on nodes with GPUs by adding node selectors
for the corresponding GPU support node label to the Pod
configuration. Moreover, different Pods can be forced on
the same node by adding Pod affinity rules to both Pod’s
configurations. Nevertheless, app developers are not the only
actors with requirements for the scheduler. CAs may have
additional business or security-related scheduling constraints
such as:

• constraining tenant Pods to certain regions or node types.
• scheduling Pods from different tenants on different nodes.
• scheduling Pods with different privilege levels on differ-

ent nodes.
• scheduling Pods from different tenants on different iso-

lated network segments.
Unfortunately, such constraints are not natively supported

in K8s. In some cases, these constraints may be implemented
by existing means, e.g., using a static labeling of nodes and an
admission controller that adds Pod labels and scheduling con-
straints to the configurations of scheduled Pods. Nevertheless,
such bespoke solutions have a number of drawbacks.

Most prominently, segmentation approaches based on node
labels are static. For certain use cases, e.g., restricting Pod
placement to certain geographies or node types, this may be
sufficient, but a static segmentation of nodes for multi-tenancy
may not adapt easily to the dynamic scaling of tenants. More-
over, restricting the scheduler in this way may undermine its
other objectives w.r.t. cost, performance, etc., leading to sub-
optimal Pod placements. Any bespoke solution will necessarily
add complexity and be a source for vulnerabilities, not to
mention additional overheads of the actual scheduling process.
Finally, using scheduling constraints alone, there is no way
to enforce network isolation, e.g., between tenants: malicious
application admins may attempt to counteract any attempts
of the CA to implement multi-tenancy in a cluster, e.g., by
manipulating labels and affinity rules in Pod configurations or
adding compromising network policies.

We propose that Pod network segmentation constraints
should be supported by the scheduler via an intent-based



interface to the CA. Ideally, the CA should not worry, for
instance in a multi-tenancy scenario, which exact nodes are
occupied by Pods of one tenant, as long as the Pods from
all other tenants are scheduled on different nodes. In the
same way, for network segmentation, the exact set of nodes
within each segment should be determined dynamically by the
scheduler, taking into account all other application require-
ments, and the CA should only specify which segments are
needed, e.g., by identifying associated node names, generic
Pod labels, container privileges with respect to access to the
operating system or K8s API, or tenant namespaces. Finally,
while network policies may allow the communication between
Pods, there should also be a way to restrict the communication
between network segments in a way that cannot be overruled
by application admins.

III. RELATED WORK

Microsegmentation involves the use of fine-grained and
distributed firewall rules to restrict the lateral movement of
an attacker within cloud-based applications, similar to K8s
network policies. The major microsegmentation platforms
today, such as Cisco ACI [6] and VMware NSX [4], support
integration with K8s through Container Networking Interface
(CNI) network plugins. Illumio’s Core [7] installs a separate
agent on each K8s node, yet not integrated with CNI. Overall
these platforms have certain limitations:

• Microsegmentation platforms segregate VM-based and
K8s-based firewall rules in distinct administrative do-
mains. Lack of intent-based and automated coordination
between these layers results in security/performance in-
consistencies, detectable only by combining APIs for
these domains. Performing accurate and comprehensive
consistency checks is a challenging and error-prone task.

• Chaining multiple consistency checks can significantly
delay Pod-readiness. For instance, Illumio’s policy con-
vergence controller has a configurable delay (i.e., 0 to
300 seconds) with a default of 15 seconds [7].

• The agent-based approach of Illumio enforces VM-level
security policies within VMs rather than at the VM-
network level with security groups.

Security-oriented scheduling aims to enhance the security
posture of containerized applications within a cloud envi-
ronment by selecting secured nodes for container placement.
Containers offer high degrees of flexibility and scalability, but
they also introduce unique security challenges. K8s policies [8]
such as ResourceQuotas and LimitRanges are typically ap-
plied to restrict the amount of resources that containers can
consume. Recently, in [9], the authors implemented a syscall-
aware scheduler to improve container security. Their scheduler
reduces extraneous system calls by up to 2x compared to
the default scheduler, while also reducing overall host attack
surface by 20%. However, the solution focuses only on one
aspect of platform security, leaving other concerns of the CA
out of scope.

IV. INTENT-BASED SCHEDULER ARCHITECTURE

This section presents the vision for a scheduling extension
in K8s designed to prevent security conflicts by strategically
placing Pods on nodes that align with all CA preferences.
Specifically, Pods from different applications are scheduled
across node segments based on the preferences set by the
CA. Moreover, the objective is to consistently deploy Pods of
the same application in a segment that meets the performance
requirements of that application. Fig. 2 provides an overview
of the envisioned architecture and its main components.

The Diktyo network-aware scheduler [5] determines
the efficient placement of dependent microservices in long-
running applications focused on minimizing end-to-end la-
tency and ensuring bandwidth reservations. Diktyo proposes
AppGroup (AG) and NetworkTopology (NT) Custom Re-
source Definitions (CRDs) to record desired network per-
formance between microservices, and actual network perfor-
mance between nodes, respectively. In addition, a Security
policy manager based on GrassHopper (GH) [2] verifies
that network policies within microservice-based applications
are free from internal conflicts or excessive permissions and
enforces the resulting network segmentation on the VM-level
via dynamic security group configuration. In cases where such
network policies are absent, they are automatically generated
from the dependencies between microservices managed by AG
Custom Resources (CRs), ensuring adherence to the principle
of the least-privilege - allowing only the minimal permissions
necessary for a functioning system.

Lastly, the envisioned architecture comprises a Segmenta-
tion CRD to enable the declarative specification of cluster
segments across edge-to-cloud regions and zones, identified
by name or label. This allows CAs to specify high-level
segmentation constraints via a Segmentation CR instance.

The subsequent subsections elaborate further on these three
components of the intent-based scheduling architecture. Note
that only the first two components have been implemented.

A. Extending Kubernetes (K8s) scheduling through Diktyo

Diktyo manages both application dependencies (i.e., AG
CR) and infrastructure network topology (i.e., NT CR) when
scheduling Pods in K8s. It provides network-aware scheduling
plugins to filter out nodes based on AG requirements, and
scores nodes using network weights to ensure appropriate
network latency and bandwidth between dependent Pods. This
work extends Diktyo toward security-oriented scheduling by
introducing the following functionalities:

• Monitoring the bandwidth/latency and security posture
(i.e., existing security group rules) of the K8s cluster
network topology.

• AGs specify microservice inter-dependencies as well as
latency and bandwidth requirements of each dependency,
including additional overall application requirements.

• Diktyo matches AGs to segments, considering segmenta-
tion constraints and desired network performance in novel
filtering and scoring plugins. Pod-to-node scheduling re-
spects these constraints and the network topology status.



Pods to be scheduled

Towards Intent-based Scheduling in Kubernetes (K8s)

NetworkTopology CR

AppGroup CR

GrassHopper (GH)

Openstack

Data Plane Control Plane

Cluster Admin

K8s Cluster State

Segment CR

Sc
he

du
lin

g
Le

as
t-

pr
iv

ile
ge

Fi
re

w
al

l R
ul

es

Diktyo

Security Group
configuration

Kubernetes

Openstack API

Segment

Cluster Nodes

Segment Segment

App Admin

Fig. 2: Schematic representation of the Intent-based Scheduling framework for Kubernetes (K8s).

Region us-west-1

Segment S2

Segment S1

Zone Z3 Zone Z4

Zone Z1 Zone Z2

Region us-east-1

Segment S4

Segment S3

Zone Z7 Zone Z8

Zone Z5 Zone Z6

Fig. 3: Illustration of the extended Network Topology (NT).

• Unmet scheduling constraints due to unavailable nodes
trigger default node auto-scaling strategies, while other
unmet constraints lead to pending Pod notifications.

AppGroup The existing design has been enhanced by
adding AG statistics for each microservice and the entire AG
to determine the application’s overall deployment cost. Diktyo
applies these statistics to identify an appropriate segment for
Pods of a given application by comparing these with network
cost statistics available in the extended NT CR.

NetworkTopology Diktyo monitors available bandwidth
and network latency between nodes of a K8s cluster, main-
taining this information in the NT CR by using topology
keys for identifying zones and regions. All cluster nodes are
labeled with these keys by default. The NT CRD has been
extended with an additional topology key for node segments
(i.e., topology.kubernetes.io/segment). The enhanced design
supports intra- and inter-origin statistics for the entire network
topology, determining the overall capacity of a location (i.e.,
region, zone, or segment) in the K8s cluster and whether
segment communication is allowed as shown in Fig. 3. Diktyo
compares inter- and intra- origin statistics with AG statistics
to find the optimal node segment for a certain application.
Considering security group rules set by the CA, network
latency for inter-node connections blocked by these rules is
recorded as infinitely high in the NT. From this, segment

topology key can be automatically inferred. This extended
design addresses various scenarios, such as (1) identifying the
optimal segment based on overall AG requirements and current
segment capacity, and (2) implementing automatic scaling by
adding nodes to a segment when all existing nodes are at full
capacity.

B. GrassHopper (GH): efficient Security policy manager

GH is designed for URLLC applications, where Pod-level
network traffic is routed as-is on the VM-level network to
avoid network encapsulation overhead. To allow this Pod
traffic on the VM network, GH ensures security group rules
at the VM level are added/removed dynamically after Pod
scheduling/deletion, but only if verified K8s network policies
allow this Pod traffic.

In this work, we have integrated GH with Diktyo so that
when an application is deployed across segments, its connec-
tion requests are all automatically blocked. As such, there is a
second line of defense against tenants’ applications that violate
segmentation constraints.

C. Towards a Segmentation CRD

The Segmentation CRD should have the following APIs:
• Cluster Segmentation A segment consists of a number

of nodes across edge-to-cloud regions and zones, which
can be identified by name or label. Segment identifiers
are chosen by the CA, but the exact set of nodes within
each segment is determined by the Diktyo scheduler.

• High-level segmentation constraints Application selec-
tors (e.g., deployments, Pods) are applied in segmentation
constraints. The selectors can be matched by name (e.g.,
AG, namespaces, Pod labels) or by a computable property
(e.g., similar container privileges).

• (Anti-)Affinity Segmentation preferences Different
kinds of constraints can be added to segment speci-
fications, such as application-to-segment affinity, inter-
application segment (anti-)affinity, as well as exceptional



Opa-based mutating webhook (current approach) 

API request

Authentication
Authorization
Mutating Admission Controllers

Object Schema Validation
Validating Admission Controllers

Mutating Admission Webhooks

Validating Admission Webhooks

Segment

Cluster Nodes

Segment Segment

Kube Scheduler (KS)

Data Plane

Control Plane

Le
as

t-
pr

iv
ile

ge
Fi

re
w

al
l R

ul
es

GrassHopper (GH)

Security Group
configuration

Pods to be scheduled

Fig. 4: Illustration of the OPA-based scheduling scheme [10].
TABLE I: Deployment properties of the TeaStore application.

Deployment CPU Req/Lim (in mcpu) MEM Req/Lim (in MiB)
webui 750/1000 512/1024
registry 500/500 512/768
image 750/1000 512/1024
auth 500/1000 512/1024
persistence 500/1000 512/1024
db 500/500 256/512
recommender 500/500 512/768

communication allowed between segments via designated
gateway nodes that are identified by label or property.

The idea is that segments are not statically defined and
assigned to applications by the CA but instead, the scheduler
should collect all relevant concerns for a given Pod and decide
its optimal placement, thereby creating segments dynamically.
Ideally, this will allow to balance performance and security
requirements, while inconsistencies between Pod and node
level networking can be avoided by forwarding the resulting
segmentation information to the Security policy manager.
The segmentation CRD also requires to extend the Diktyo
scheduler with a novel scheduling plugin that dynamically
orchestrates node segmentation as driven by the segmentation
CRD, deployed applications, and network topology status.

V. EVALUATION AND METHODOLOGY

This section presents an evaluation of a preliminary pro-
totype that does not yet implement the segmentation CRD
and associated scheduler plugins. Instead, the CA specifies
traditional security groups to block all connections between
certain worker nodes. As described in Section IV-A, these
network blockages are automatically detected and represented
in the NT CR, from which node segmentation labels can be
automatically inferred. We compare this prototype (C3) with
two other scheduling scheme candidates:

• C1: The default K8s scheduler, an OPA-based Mutating
Admission webhook [10] that adds a node selector for a

particular segment to every Pod, and GH to restrict node-
level networking as described in Section IV-B (Fig. 4).

• C2: Regular Diktyo that is not segment-aware (blocked
connections are monitored but nodes are not labeled with
a segmentation label), and GH as described above.

To evaluate the performance of these different scheduling
schemes, the TeaStore application [11] has been used as a
reference application to assess scheduler performance. Tea-
Store is a widely used microservice benchmark framework
consisting of seven workloads with distinct performance char-
acteristics allowing the evaluation of scheduling and auto-
scaling techniques. It emulates a Web Store for automatically
generated tea supplies and features several User Interface
(UI) elements for database generation and service resetting
in addition to the store itself. Table I shows the TeaStore
deployment requirements (given in millicpu and mebibytes)
applied in the evaluation.

The testbed used for running all the experiments is an
isolated part of a private OpenStack cloud, version Yoga. The
minions that run VMs have two CPU sockets with an Intel(R)
Xeon(R) Silver 4316 CPU processor @ 2.30GHz (2 cores, 60
threads) and 256 GB RAM. Each minion has two 10 Gbit
and one 1 Gbit network interfaces. A K8s v1.28.4 - kubeadm
Cluster Infrastructure has been set up with one master node,
and four worker nodes: two nodes (w1, w3) with 2 cores,
4GiB and the other two (w2 and w4) with 4 cores, 4GiB.
Two fixed segments have been constructed with equal resource
availability: s1: [w1, w2], and s2: [w3, w4]. Network delays
have been emulated using TC for segment s2 to represent
varying network conditions in the cluster. Segment s1 has
significantly lower delays than s2.

To evaluate the performance in terms of response time and
throughput for all scheduling scenarios, a load generator based
on the locust load tool [12] was utilized. Emulated users
generated a mix of GET and POST requests to simulate realis-
tic workload conditions. The performance of each scheduling
approach has been evaluated based on the following metrics:

• Throughput (requests/s) obtained for TeaStore.
• Response time (in ms) for all generated requests.
• Adequate Segment placement (in %) according to the

segmentation of the K8s infrastructure.

VI. EVALUATION RESULTS

Table II presents the performance of TeaStore across the
three evaluated scenarios. In C1, the admission controller,
coupled with the default K8s scheduler, proficiently deploys all
TeaStore Pods in the designated segment (s1), but its correct
operation relies on effort of the CA to add segment labels
to nodes manually. Conversely, the existing Diktyo scheduler
encounters challenges deploying Pods without dependencies
in the AG, occasionally placing them in s2, thereby causing
GH to block all connection requests of the application out of
precaution. The extended version of Diktyo (C3) solves the
placement by comparing AG statistics with overall network
costs available in the NT CR for each segment.



TABLE II: TeaStore performance (response time and throughput) for the different scheduling strategies.

Throughput (Req/s) Response Time (in ms) Segment Placement Pending Pods
Case Total Number Avg. Throughput Median Avg. 98th Percentile Adequate (in %) Ratio (in %)
C1 11.34 K 47.59 ± 3.54 55.63 ± 4.43 104.9 ± 15.55 390.5 ± 109.01 100% 0%
C2 10.89 K 45.52 ± 1.96 55.40 ± 2.30 114.2 ± 9.44 482.0 ± 43.24 23.8 % 28.5%
C3 10.78 K 45.02 ± 1.15 56.43 ± 2.06 116.1 ± 5.90 500.9 ± 24.27 100% 0%

No significant differences have been obtained for the three
scenarios concerning throughput and response time, with
C1 exhibiting a slightly higher throughput on average. This
can be attributed to the limited size of segment s1, where
only two nodes are available, and one cannot accommodate
all dependencies between Pods, constraining the scheduler’s
decision. Therefore, as future work, we plan to expand the
cluster with more segments and multiple nodes per segment
to make the scheduling problem more difficult. Regarding the
scheduling of all Pods, negligible differences were observed
across the three scenarios, with all Pods being deployed within
approximately 0.4 to 1 second.

In summary, C1 demands expertise and effort from CAs
for installing and configuring admission controllers, and it is
unclear how dynamic segments could be supported in this
way. Diktyo without the proposed extensions cannot solve the
placement problem, leading to pending Pods and Pods de-
ployed in the wrong segment. The extended Diktyo can solve
the placement problem in a streamlined way by considering
application dependencies and the current segment topology.

VII. CONCLUSIONS AND FUTURE WORK

Telecom vendors have adopted K8s to improve their soft-
ware for edge-to-cloud networks, leading to less dependencies
between applications and infrastructure. However this shift
also introduces a complex interplay between performance
optimization and security configuration, which is especially
hard to solve when there is a strict separation of duties
between application administrators and CAs. This paper pro-
poses a scheduling architecture that integrates container-level
and node-level network segmentation constraints directly into
the K8s scheduler through an intent-based interface. The
presented approach dynamically determines the preferred net-
work segments for each application. The vision towards an
intent-based segmentation CRD also allows CAs to focus on
broader objectives without delving into the intricacies of node-
level management. Results show that admission controllers
can effectively address this scheduling challenge for static
segmentation, albeit demanding a substantial learning curve
for CAs and manual effort in attaching segmentation label to
nodes. The extended version of Diktyo emerges as a promis-
ing approach, seamlessly integrating the preferences of both
application and cluster administrators without manual node
labeling, and enabling efficient node-level network isolation.

This work represents a pivotal first step towards a com-
prehensive solution tailored for the management of container-
based applications within dynamic multi-tenant environments.
In future work, we plan to address the following challenges:
(1) Design an expressive and intuitive Segmentation CRD that
captures all relevant intents of the CA;

(2) Develop scheduling algorithms based on the proposed
Segmentation CRD to fully implement the functionalities of
the envisioned intent-based scheduler architecture;
(3) Investigate efficient descheduling policies to maintain Pod
relationships even after dynamic changes in security rules
and node segments. It will be crucial to maintain the desired
deployment patterns specified by the CA, such as keeping
certain Pods together or apart.

ACKNOWLEDGMENT

This research has received funding under EU H2020
MSCA-ITN action 5GhOSTS, grant agreement no. 814035.
José Santos is funded by the Research Foundation Flanders
(FWO), grant number 1299323N.

REFERENCES

[1] G. Budigiri, C. Baumann, J. T. Mühlberg, E. Truyen, and W. Joosen,
“Network policies in kubernetes: Performance evaluation and security
analysis,” in 2021 Joint European Conference on Networks and Com-
munications & 6G Summit (EuCNC/6G Summit), 2021, pp. 407–412.

[2] G. Budigiri, C. Baumann, E. Truyen, J. T. Mühlberg, and W. Joosen,
“Zero-cost in-depth enforcement of network policies for low-latency
cloud-native systems,” in 2023 IEEE 16th International Conference on
Cloud Computing (CLOUD), 2023, pp. 249–261.

[3] N. Yang, W. Shen, J. Li, X. Liu, X. Guo, and J. Ma, “Take over
the whole cluster: Attacking kubernetes via excessive permissions of
third-party applications,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’23, New York, NY, USA, 2023, p. 3048–3062. [Online]. Available:
https://doi.org/10.1145/3576915.3623121

[4] VMware, “NSX Container Plugin for Kubernetes and Tanzu Application
Service - Installation and Administration Guide,” https://docs.vmware.
com/en/VMware-NSX-Container-Plugin/4.0/ncp 40 kubernetes.pdf,
2022, [Accessed: 2022-11-13].

[5] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Diktyo: Network-
aware scheduling in container-based clouds,” IEEE Transactions on
Network and Service Management, 2023.

[6] Cisco, “Cisco aci and kubernetes integration,” accessed on 13
November 2023. [Online]. Available: https://www.cisco.com/c/en/us/
td/docs/switches/datacenter/aci/apic/sw/kb/b Kubernetes Integration
with ACI.html.

[7] Illumio, “Illumio Core for Kubernetes and OpenShift,”
https://docs.illumio.com/core/22.4/Content/Resources/PDF/Illumio
Core for Kubernetes and OpenShift 21.5.18.pdf, 2022, [Accessed:
2022-11-13].

[8] Kubernetes, “Kubernetes policies,” accessed on 6 December 2023.
[Online]. Available: https://kubernetes.io/docs/concepts/policy/.

[9] M. V. Le, S. Ahmed, D. Williams, and H. Jamjoom, “Securing container-
based clouds with syscall-aware scheduling,” in Proceedings of the
2023 ACM Asia Conference on Computer and Communications Security,
2023, pp. 812–826.

[10] E. Truyen, “Installing mutating admission web hook in OPA,” accessed
on 19 December 2023. [Online]. Available: https://github.com/k8-scalar/
grasshopper/tree/opa/opa.

[11] S. Eismann, J. Kistowski, J. Grohmann, A. Bauer, N. Schmitt, and
S. Kounev, “Teastore-a micro-service reference application,” in 2019
IEEE 4th International Workshops on Foundations and Applications of
Self* Systems (FAS* W). IEEE, 2019, pp. 263–264.

[12] Locust, “An open source load testing tool.” accessed on 12 December
2023. [Online]. Available: https://locust.io/.


